

Dealing with large-scale offshore wind farm shutdown risk during a severe storm An adaptive robust optimization approach

Oscar Damanik, Dirk Van Hertem, Hakan Ergun *KU Leuven and Etch EnergyVille*

The Brussels Times Public transport, air and sea travel disrupted due to storm Eunice

Friday 18 February 2022 By Lauren Walker

Storm Eunice: Schools across UK to close as 'dangerous' weather front approaches

Met Office warns Storm Eunice will be 'one of the most impactful' in years

Emily Atkinson • Thursday 17 February 2022 15:00 GMT • . Comments

💷 🛟 🔕 🖾

NEWSIUK

Storm Eunice live: Damage could cost £360m as hundreds of thousands still without power

Δ

KU LEUVEN

5

Scheduled shutdown \rightarrow Curtailment

Eliminate the risk of massive power fluctuation from the automatic shutdown operation

Could be too conservative

Wind energy curtailment

"To curtail or not to curtail—that is the question"

Massive offshore wind farm capacity planned in the North Sea

Member States targets and ONDP generation capacities

What to do in 2050?

KU LEUVEN

7

Keep the grid balanced under threat of large-scale offshore wind farm shutdown during a severe storm

Wind forecast

Our approach

Setup

Constructing the uncertainty sets

*assuming the whole wind farm is shutdown automatically

Formulation

 $F_1 = \{x_1 \in \mathbb{Z} \times \mathbb{R}:$

- Unit commitment constraints
- AC/DC grid power flow constraints }

 $F_2(x_1,\xi) = \{x_2 \in \mathbb{R}:$

- Redispatch constraints
- AC/DC grid power flow constraints }

Solve using a column-andconstraint generation (CCG) algorithm

Case study – Results

Base case

ARO approach

Schedule manual shutdown during the storm

Consider uncertainty intervals in the presence of storm

Total day-ahead wind energy dispatch (relative to the base case)

Case study – Results

ARO approach

Schedule manual shutdown during the storm

Consider uncertainty intervals in the presence of storm

Conclusion

Further work

- Detailed model of the offshore HVDC grid
 - AC formulation to capture the DC voltage stability
- Refining the weather storm data to wind turbine level

Thank you

oscar.damanik@kuleuven.be

Let's get in touch!

